RSS-Feed abonnieren
DOI: 10.1055/s-0029-1245301
© Georg Thieme Verlag KG Stuttgart · New York
Aktueller Stand der Mikro-CT in der experimentellen Kleintierbildgebung
Current Concepts for Experimental Micro-CT in Small AnimalsPublikationsverlauf
eingereicht: 14.11.2009
angenommen: 2.2.2010
Publikationsdatum:
23. April 2010 (online)

Zusammenfassung
Die Mikro-CT (µCT) hat sich in den letzten Jahren zu einem akzeptierten Forschungsinstrument für die nichtinvasive Bildgebung von Kleintieren entwickelt. Die vorliegende Übersichtsarbeit erläutert die technischen Grundlagen der µCT, beschreibt die bisher erfolgreich mittels µCT bearbeiteten Fragestellungen und geht auf Limitationen ein, welche bei der Planung und Durchführung von µCT-gestützer Bildgebung von Relevanz sind.
Abstract
The number of publications describing the use of micro-computed tomography (µCT) for preclinical in vivo imaging of small animals has risen considerably within the last few years. The purpose of this review is to familiarize the reader with the basic principles of µCT, to present successful experimental approaches in order of the evaluated organ system, and to highlight limitations that need to be considered when planning µCT-based studies.
Key words
CT - experimental - in vivo - small animal - micro-CT
Literatur
- 1
Ritman E L.
Small-animal CT – Its Difference from, and Impact on, Clinical CT.
Nucl Instrum Methods Phys Res A.
2007;
580
968-970
MissingFormLabel
- 2
Bartling S H, Stiller W, Semmler W. et al .
Small animal computed tomography imaging.
Curr Med Imag Rev.
2007;
3
45-59
MissingFormLabel
- 3
Ritman E L.
Micro-computed tomography – current status and developments.
Annu Rev Biomed Eng.
2004;
6
185-208
MissingFormLabel
- 4
Schambach S J, Bag S, Schilling L. et al .
Application of micro-CT in small animal imaging.
Methods.
2010;
50
2-13
MissingFormLabel
- 5
Schambach S J, Bag S, Groden C. et al .
Vascular imaging in small rodents using micro-CT.
Methods.
2010;
50
25-35
MissingFormLabel
- 6
Martiniova L, Schimel D, Lai E W. et al .
In vivo microCT imaging of liver lesions in small animal models.
Methods.
2010;
50
20-25
MissingFormLabel
- 7
Bartling S H, Kuntz J, Semmler W.
Gating in small-animal cardio-thoracic CT.
Methods.
2010;
50
42-49
MissingFormLabel
- 8
Cavanaugh D, Johnson E, Price R E. et al .
In vivo respiratory-gated micro-CT imaging in small-animal oncology models.
Mol Imaging.
2004;
3
55-62
MissingFormLabel
- 9
Kujoory M A, Hillman B J, Barrett H H.
High-resolution computed tomography of the normal rat nephorgram.
Invest Radiol.
1980;
15
148-154
MissingFormLabel
- 10
Sato T, Ikeda O, Yamakoshi Y. et al .
X-ray tomography for microstructural objects.
Appl Opt.
1981;
20
3880-3883
MissingFormLabel
- 11
Elliott J C, Dover S D.
X-ray tomography.
J Microsc.
1982;
126
211-213
MissingFormLabel
- 12
Feldkamp L A, Davis L C, Kress J W.
Practical cone-beam algorithm.
J Opt Soc Amer.
1984;
1
612-619
MissingFormLabel
- 13
Holdsworth D W, Drangova M, Fenster A.
A high-resolution XRII-based quantitavie volume CT scanner.
Med Phys.
1993;
20
449-462
MissingFormLabel
- 14
Boone J M, Alexander G M, Seibert J A.
A fluoroscopy-based computed tomography scanner for small specimen research.
Invest Radiol.
1993;
28
539-544
MissingFormLabel
- 15
Paulus M J, Sari-Sarraf H, Gleason S S. et al .
A new X-ray computed tomography system for laboratory mouse imaging.
IEEE Trans Nucl Sci.
1999;
46
558-564
MissingFormLabel
- 16
Stiller W, Kobayashi M, Koike K. et al .
Erste Erfahrungen mit einem neuen Niedrigdosis-Mikro-CT.
Fortschr Röntgenstr.
2007;
179
669-675
MissingFormLabel
- 17
Ertel D, Kyriakou Y, Lapp R M. et al .
Respiratory phase-correlated micro-CT imaging of free-breathing rodents.
Phys Med Biol.
2009;
54
3837-3846
MissingFormLabel
- 18
Granton P V, Pollmann S I, Ford N L. et al .
Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction
material decomposition.
Med Phys.
2008;
35
5030-5042
MissingFormLabel
- 19
Badea C T, Drangova M, Holdsworth D W. et al .
In vivo small-animal imaging using micro-CT and digital subtraction angiography.
Phys Med Biol.
2008;
53
R319-350
MissingFormLabel
- 20 Kalender W. Computed Tomography. Erlangen: Publicis Med; 2005
MissingFormLabel
- 21 Haas D JS CT, inventor North American Philips Corporation (New York, NY), assignee.. Transmission x-ray tube. United States; 1977
MissingFormLabel
- 22
Badea C, Hedlund L W, Johnson G A.
Micro-CT with respiratory and cardiac gating.
Med Phys.
2004;
31
3324-3329
MissingFormLabel
- 23 Theuwissen A JP. Solid-State Imaging with Charge-Coupled Devices. Dordrecht: Kluwer Academic Publishers; 1995
MissingFormLabel
- 24
Drangova M, Ford N L, Detombe S A. et al .
Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed
tomography imaging of free-breathing mice.
Invest Radiol.
2007;
42
85-94
MissingFormLabel
- 25
Kiessling F, Greschus S, Lichy M P. et al .
Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution
monitoring of tumor angiogenesis.
Nat Med.
2004;
10
1133-1138
MissingFormLabel
- 26
Schambach S J, Bag S, Steil V. et al .
Ultrafast High-Resolution In Vivo Volume-CTA of Mice Cerebral Vessels.
Stroke.
2009;
40
1444-1450
MissingFormLabel
- 27
Spahn M, Heer V, Freytag R.
Flachbilddetektoren in der Röntgendiagnostik.
Radiologe.
2003;
43
340-350
MissingFormLabel
- 28 Behrens R, 96 114 Hirschaid, DE;, Wittmann G, Dr., 91 074 Herzogenaurach, DE, inventors;
North American Philips Corporation (New York, NY), assignee. Strahlungsdetektor. United States; 2007
MissingFormLabel
- 29
Goertzen A L, Nagarkar V, Street R A. et al .
A comparison of x-ray detectors for mouse CT imaging.
Phys Med Biol.
2004;
49
5251-5265
MissingFormLabel
- 30
Adam J F, Elleaume H, Le D uc G. et al .
Absolute cerebral blood volume and blood flow measurements based on synchrotron radiation
quantitative computed tomography.
J Cereb Blood Flow Metab.
2003;
23
499-512
MissingFormLabel
- 31
Bartling S H, Dinkel J, Stiller W. et al .
Intrinsic respiratory gating in small-animal CT.
Eur Radiol.
2008;
18
1375-1384
MissingFormLabel
- 32
Badea C T, Schreibmann E, Fox T.
A registration based approach for 4D cardiac micro-CT using combined prospective and
retrospective gating.
Med Phys.
2008;
35
1170-1179
MissingFormLabel
- 33
Detombe S A, Ford N L, Xiang F. et al .
Longitudinal follow-up of cardiac structure and functional changes in an infarct mouse
model using retrospectively gated micro-computed tomography.
Invest Radiol.
2008;
43
520-529
MissingFormLabel
- 34
Ford N L, Wheatley A R, Holdsworth D W. et al .
Optimization of a retrospective technique for respiratory-gated high speed micro-CT
of free-breathing rodents.
Phys Med Biol.
2007;
52
5749-5769
MissingFormLabel
- 35
Nahrendorf M, Badea C, Hedlund L W. et al .
High-resolution imaging of murine myocardial infarction with delayed-enhancement cine
micro-CT.
Am J Physiol Heart Circ Physiol.
2007;
292
H3172-3178
MissingFormLabel
- 36
Badea C T, Fubara B, Hedlund L W. et al .
4-D micro-CT of the mouse heart.
Mol Imaging.
2005;
4
110-116
MissingFormLabel
- 37
Ford N L, Nikolov H N, Norley C J. et al .
Prospective respiratory-gated micro-CT of free breathing rodents.
Med Phys.
2005;
32
2888-2898
MissingFormLabel
- 38
Song J, Liu Q H, Johnson G A. et al .
Sparseness prior based iterative image reconstruction for retrospectively gated cardiac
micro-CT.
Med Phys.
2007;
34
4476-4483
MissingFormLabel
- 39
Farncombe T H.
Software-based respiratory gating for small animal conebeam CT.
Med Phys.
2008;
35
1785-1792
MissingFormLabel
- 40
Dinkel J, Bartling S H, Kuntz J. et al .
Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm
for deriving cardiac phase information and functional imaging.
Circ Cardiovasc Imaging.
2008;
1
235-243
MissingFormLabel
- 41
Namati E, Chon D, Thiesse J. et al .
In vivo micro-CT lung imaging via a computer-controlled intermittent iso-pressure
breath hold (IIBH) technique.
Phys Med Biol.
2006;
51
6061-6075
MissingFormLabel
- 42
Hamacher J, Arras M, Bootz F. et al .
Microscopic wire guide-based orotracheal mouse intubation: description, evaluation
and comparison with transillumination.
Lab Anim.
2008;
42
222-230
MissingFormLabel
- 43
Jiang Y, Zhao J, White D L. et al .
Micro CT and Micro MR imaging of 3D architecture of animal skeleton.
J Musculoskelet Neuronal Interact.
2000;
1
45-51
MissingFormLabel
- 44
McErlain D D, Appleton C T, Litchfield R B. et al .
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo
micro-computed tomography.
Osteoarthritis Cartilage.
2008;
16
458-469
MissingFormLabel
- 45
Cowan C M, Aghaloo T, Chou Y F. et al .
MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses
in vitro and in critical sized rat calvarial defects.
Tissue Eng.
2007;
13
501-512
MissingFormLabel
- 46
Bayat S AL, Boller E, Brochard T. et al .
In vivo imaging of bone micro-architecture in mice with 3D synchrotron radiation micro-tomography.
Nuclear instruments and Methods in Physics Research.
2005;
A
247-252
MissingFormLabel
- 47
Martin-Badosa E, Amblard D, Nuzzo S. et al .
Excised bone structures in mice: imaging at three-dimensional synchrotron radiation
micro CT.
Radiology.
2003;
229
921-928
MissingFormLabel
- 48
Yee A J, Akens M, Yang B L. et al .
The effect of versican G 3 domain on local breast cancer invasiveness and bony metastasis.
Breast Cancer Res.
2007;
9
R47
MissingFormLabel
- 49
Watanabe H, Kislauskis E H, Mackay C A. et al .
Actin mRNA isoforms are differentially sorted in normal osteoblasts and sorting is
altered in osteoblasts from a skeletal mutation in the rat.
J Cell Sci.
1998;
111
1287-1292
MissingFormLabel
- 50
Bentley M D, Ortiz M C, Ritman E L. et al .
The use of microcomputed tomography to study microvasculature in small rodents.
Am J Physiol Regul Integr Comp Physiol.
2002;
282
R1267-1279
MissingFormLabel
- 51
Rabin O, Manuel Perez J, Grimm J. et al .
An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide
nanoparticles.
Nat Mater.
2006;
5
118-122
MissingFormLabel
- 52
Montet X, Rajopadhye M, Weissleder R.
An albumin-activated far-red fluorochrome for in vivo imaging.
ChemMedChem.
2006;
1
66-69
MissingFormLabel
- 53
Barrett T, Kobayashi H, Brechbiel M. et al .
Macromolecular MRI contrast agents for imaging tumor angiogenesis.
Eur J Radiol.
2006;
60
353-366
MissingFormLabel
- 54
Persy V, Postnov A, Neven E. et al .
High-resolution X-ray microtomography is a sensitive method to detect vascular calcification
in living rats with chronic renal failure.
Arterioscler Thromb Vasc Biol.
2006;
26
2110-2116
MissingFormLabel
- 55
Li X F, Zanzonico P, Ling C C. et al .
Visualization of experimental lung and bone metastases in live nude mice by X-ray
micro-computed tomography.
Technol Cancer Res Treat.
2006;
5
147-155
MissingFormLabel
- 56
Hori Y, Takasuka N, Mutoh M. et al .
Periodic analysis of urethane-induced pulmonary tumors in living A/J mice by respiration-gated
X-ray microcomputed tomography.
Cancer Sci.
2008;
99
1774-1777
MissingFormLabel
- 57
Shofer S, Badea C, Auerbach S. et al .
A micro-computed tomography-based method for the measurement of pulmonary compliance
in healthy and bleomycin-exposed mice.
Exp Lung Res.
2007;
33
169-183
MissingFormLabel
- 58
Postnov A A, Meurrens K, Weiler H. et al .
In vivo assessment of emphysema in mice by high resolution X-ray microtomography.
J Microsc.
2005;
220
70-75
MissingFormLabel
- 59
Lam W W, Holdsworth D W, Du L Y. et al .
Micro-CT imaging of rat lung ventilation using continuous image acquisition during
xenon gas contrast enhancement.
J Appl Physiol.
2007;
103
1848-1856
MissingFormLabel
- 60
Bartling S H, Stiller W, Grasruck M. et al .
Retrospective motion gating in small animal CT of mice and rats.
Invest Radiol.
2007;
42
704-714
MissingFormLabel
- 61
Badea C T, Pomerantz S, Nave D. et al .
Left ventricle volume measurements in cardiac micro-CT: the impact of radiation dose
and contrast agent.
Comput Med Imaging Graph.
2008;
32
39-50
MissingFormLabel
- 62
Badea C T, Hedlund L W, Johnson G A.
Micro-CT with respiratory and cardiac gating.
Med Phys.
2004;
31
3324-3329
MissingFormLabel
- 63
Badea C T, Bucholz E, Hedlund L W. et al .
Imaging methods for morphological and functional phenotyping of the rodent heart.
Toxicol Pathol.
2006;
34
111-117
MissingFormLabel
- 64
Henning T, Weber A W, Bauer J S. et al .
Imaging characteristics of DHOG, a hepatobiliary contrast agent for preclinical microCT
in mice.
Acad Radiol.
2008;
15
342-349
MissingFormLabel
- 65
Weber S M, Peterson K A, Durkee B. et al .
Imaging of murine liver tumor using microCT with a hepatocyte-selective contrast agent:
accuracy is dependent on adequate contrast enhancement.
J Surg Res.
2004;
119
41-45
MissingFormLabel
- 66
Kim H W, Cai Q Y, Jun H Y. et al .
Micro-CT imaging with a hepatocyte-selective contrast agent for detecting liver metastasis
in living mice.
Acad Radiol.
2008;
15
1282-1290
MissingFormLabel
- 67
Almajdub M, Nejjari M, Poncet G. et al .
In-vivo high-resolution X-ray microtomography for liver and spleen tumor assessment
in mice.
Contrast Media Mol Imaging.
2007;
2
88-93
MissingFormLabel
- 68
Montet X, Pastor C M, Vallee J P. et al .
Improved visualization of vessels and hepatic tumors by micro-computed tomography
(CT) using iodinated liposomes.
Invest Radiol.
2007;
42
652-658
MissingFormLabel
- 69
Mukundan S Jr, Ghaghada K B, Badea C T. et al .
A liposomal nanoscale contrast agent for preclinical CT in mice.
Am J Roentgenol.
2006;
186
300-307
MissingFormLabel
- 70
Chouker A, Lizak M, Schimel D. et al .
Comparison of Fenestra VC contrast-enhanced computed tomography imaging with gadopentetate
dimeglumine and ferucarbotran magnetic resonance imaging for the in vivo evaluation
of murine liver damage after ischemia and reperfusion.
Invest Radiol.
2008;
43
77-91
MissingFormLabel
- 71
Pickhardt P J, Halberg R B, Taylor A J. et al .
Microcomputed tomography colonography for polyp detection in an in vivo mouse tumor
model.
Proc Natl Acad Sci USA.
2005;
102
3419-3422
MissingFormLabel
- 72
Durkee B Y, Weichert J P, Halberg R B.
Small animal microCT colonography.
Methods.
2010;
50
36-41
MissingFormLabel
- 73
Durkee B Y, Mudd S R, Roen C N. et al .
Reproducibility of tumor volume measurement at microCT colonography in living mice.
Acad Radiol.
2008;
15
334-341
MissingFormLabel
- 74
Choquet P, Calon A, Breton E. et al .
Multiple-contrast X-ray micro-CT visualization of colon malformations and tumours
in situ in living mice.
C R Biol.
2007;
330
821-827
MissingFormLabel
- 75
Luu Y K, Lublinsky S, Ozcivici E. et al .
In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography
in a small animal model.
Med Eng Phys.
2009;
31
34-41
MissingFormLabel
- 76
Judex S, Luu Y K, Ozcivici E. et al .
Quantification of adiposity in small rodents using micro-CT.
Methods.
2010;
50
14-15
MissingFormLabel
- 77
Chugh B P, Lerch J P, Yu L X. et al .
Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography.
Neuroimage.
2009;
47
1312-1318
MissingFormLabel
- 78
Proweller A, Wright A C, Horng D. et al .
Notch signaling in vascular smooth muscle cells is required to pattern the cerebral
vasculature.
Proc Natl Acad Sci USA.
2007;
104
16 275-16 280
MissingFormLabel
- 79
Heinzer S, Krucker T, Stampanoni M. et al .
Hierarchical microimaging for multiscale analysis of large vascular networks.
Neuroimage.
2006;
32
626-636
MissingFormLabel
- 80
Mizutani R, Takeuchi A, Uesugi K. et al .
Three-dimensional microtomographic imaging of human brain cortex.
Brain Res.
2008;
1199
53-61
MissingFormLabel
- 81
de Crespigny A, Bou-Reslan H, Nishimura M C. et al .
3D micro-CT imaging of the postmortem brain.
J Neurosci Methods.
2008;
171
207-213
MissingFormLabel
- 82
Adam J F, Nemoz C, Bravin A. et al .
High-resolution blood-brain barrier permeability and blood volume imaging using quantitative
synchrotron radiation computed tomography: study on an F 98 rat brain glioma.
J Cereb Blood Flow Metab.
2005;
25
145-153
MissingFormLabel
- 83
Le Duc G, Corde S, Charvet A M. et al .
In vivo measurement of gadolinium concentration in a rat glioma model by monochromatic
quantitative computed tomography: comparison between gadopentetate dimeglumine and
gadobutrol.
Invest Radiol.
2004;
39
385-393
MissingFormLabel
- 84
Balvay D, Tropres I, Billet R. et al .
Mapping the zonal organization of tumor perfusion and permeability in a rat glioma
model by using dynamic contrast-enhanced synchrotron radiation CT.
Radiology.
2009;
250
692-702
MissingFormLabel
- 85
Engelhorn T, Eyupoglu I Y, Schwarz M A. et al .
In vivo micro-CT imaging of rat brain glioma: a comparison with 3 T MRI and histology.
Neurosci Lett.
2009;
458
28-31
MissingFormLabel
- 86
Nikolova S, Moyanova S, Hughes S. et al .
Endothelin-1 induced MCAO: dose dependency of cerebral blood flow.
J Neurosci Methods.
2009;
179
22-28
MissingFormLabel
- 87
Newcomb E W, Demaria S, Lukyanov Y. et al .
The combination of ionizing radiation and peripheral vaccination produces long-term
survival of mice bearing established invasive GL 261 gliomas.
Clin Cancer Res.
2006;
12
4730-4737
MissingFormLabel
- 88
Schwarz M, Engelhorn T, Eyupoglu I Y. et al .
In-vivo-Bildgebung mittels MSCT und Mikro-CT: eine vergleichende Studie.
Fortschr Röntgenstr.
2010;
182
322-326
MissingFormLabel
- 89
Paulus M J, Gleason S S, Kennel S J. et al .
High resolution X-ray computed tomography: an emerging tool for small animal cancer
research.
Neoplasia.
2000;
2
62-70
MissingFormLabel
- 90
Yuhas J M.
Recovery from radiation-carcinogenic injury to the mouse ovary.
Radiat Res.
1974;
60
321-332
MissingFormLabel
- 91
Bhattacharjee R N, Banks G C, Trotter K W. et al .
Histone H 1 phosphorylation by Cdk2 selectively modulates mouse mammary tumor virus
transcription through chromatin remodeling.
Mol Cell Biol.
2001;
21
5417-5425
MissingFormLabel
- 92
Takahashi M, Kojima S, Yamaoka K. et al .
Prevention of type I diabetes by low-dose gamma irradiation in NOD mice.
Radiat Res.
2000;
154
680-685
MissingFormLabel
- 93
O’Halloran R L, Wen Z, Holmes J H. et al .
Iterative projection reconstruction of time-resolved images using highly-constrained
back-projection (HYPR).
Magn Reson Med.
2008;
59
132-139
MissingFormLabel
- 94
Chen G H, Tang J, Leng S.
Prior Image Constrained Compressed Sensing (PICCS).
Proc Soc Photo Opt Instrum Eng.
2008;
6856
doi: 10.1117/12.770532
MissingFormLabel
- 95
Pichler B J, Judenhofer M S, Pfannenberg C.
Multimodal imaging approaches: PET/CT and PET/MRI.
Handb Exp Pharmacol.
2008;
185
109-132
MissingFormLabel
- 96
Chapon C, Jackson J S, Aboagye E O. et al .
An in vivo multimodal imaging study using MRI and PET of stem cell transplantation
after myocardial infarction in rats.
Mol Imaging Biol.
2009;
11
31-38
MissingFormLabel
- 97
Chang C H, Jan M L, Fan K H. et al .
Longitudinal evaluation of tumor metastasis by an FDG-microPet/microCT dual-imaging
modality in a lung carcinoma-bearing mouse model.
Anticancer Res.
2006;
26
159-166
MissingFormLabel
- 98
Ritman E L.
Molecular imaging in small animals – roles for micro-CT.
J Cell Biochem Suppl.
2002;
39
116-124
MissingFormLabel
- 99
Deroose C M, De A, Loening A M. et al .
Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal
PET, small-animal CT, and bioluminescence imaging.
J Nucl Med.
2007;
48
295-303
MissingFormLabel
- 100
Oldham M, Sakhalkar H, Oliver T. et al .
Three-dimensional imaging of xenograft tumors using optical computed and emission
tomography.
Med Phys.
2006;
33
3193-3202
MissingFormLabel
PD Dr. Marc Alexander Brockmann, MSc
Abteilung für Neuroradiologie, Medizinische Fakultät Mannheim, Universität Heidelberg
Theodor-Kutzer-Ufer 1 – 3
61867 Mannheim
Telefon: ++ 49/6 21/3 83 24 43
Fax: ++ 49/6 21/3 83 21 65
eMail: brockmann@gmx.de